jueves, 11 de junio de 2009

ANTIMATERIA


ANTIMATERIA

Acelerador de antiprotones del CERN
En química y física se conoce como antimateria a las agrupaciones organizadas de antipartículas, de forma análoga a como la materia es la agrupación de partículas.
Contenido

Notación
En ciencia se usa una barra horizontal o macrón para diferenciar las partículas de las antipartículas: por ejemplo protón p y antiprotón p. Para los átomos de antimateria se emplea la misma notación: por ejemplo, si el hidrógeno se escribe H, el antihidrógeno será H.
También se utiliza la diferencia de carga eléctrica entre ambas partículas: por ejemplo electrón e− y positrón e+

Dónde está la antimateria
Las teorías científicas más aceptadas afirman que en el origen del universo existían materia y antimateria en iguales proporciones. Pero la materia y la antimateria se aniquilan mutuamente, dando como resultado energía pura, y sin embargo, el universo que observamos está compuesto únicamente por materia. Se desconocen los motivos por los que no se ha encontrado antimateria en el universo. En física, el proceso por el que la cantidad de materia superó a la de antimateria se denomina Bariogénesis, y baraja tres posibilidades:
Pequeño exceso de materia tras el Big Bang: Especula con que la materia que forma actualmente el universo podría ser el resultado de una ligera asimetría en las proporciones iniciales de ambas. Se ha calculado que la diferencia inicial entre materia y antimateria debió ser tan insignificante como de una partícula más de materia por cada diez mil millones de parejas partícula-antipartícula.
Asimetría CP: En 1967, Andréi Sájarov postuló por primera vez que las partículas y las antipartículas no tenían propiedades exactamente iguales o simétricas; una discusión denominada la Violación CP.Un reciente experimento en el acelerador KEK de Japón sugiere que esto quizás sea cierto, y que por tanto no es necesario un exceso de materia en el Big Bang: simplemente las leyes físicas que rigen el universo favorecen la supervivencia de la materia frente a la antimateria. En este mismo sentido, también se ha sugerido que quizás la materia oscura sea la causante de la bariogénesis al interactuar de distinta forma con la materia que con la antimateria.
Existencia de galaxias de antimateria ligada por antigravedad: Muy pocos científicos confían en esta posibilidad, pero todavía no ha podido ser completamente descartada. Esta tercera opción plantea la hipótesis de que pueda haber regiones del universo compuestas de antimateria. Hasta la fecha no existe forma de distinguir entre materia y antimateria a largas distancias, pues su comportamiento y propiedades son indistinguibles. Existen argumentos para creer que esta tercera opción es muy improbable: la antimateria en forma de antipartículas se crea constantemente en el universo en las colisiones de partículas de alta energía, como por ejemplo con los rayos cósmicos. Sin embargo, éstos son sucesos demasiado aislados como para que estas antipartículas puedan llegar a encontrarse y combinarse. La NASA ha enviado la sonda AMS (Alpha Magnetic Spectrometer) para buscar rastros de antimateria más compleja, que pudiesen indicar que todavía existe antimateria en el universo. Sin embargo los experimentos no han detectado nada hasta la fecha.

Historia
La ecuación de Dirac, formulada por Paul Dirac en 1928, predijo la existencia de antipartículas además de las partículas de materia ordinarias. Desde entonces, se han ido detectando experimentalmente muchas de dichas antipartículas: Carl D. Anderson, en el Caltech, descubrió el positrón en 1932. Veintitrés años después, en 1955, Emilio Segrè y Owen Chamberlain, en la universidad de Berkeley, el antiprotón y antineutrón.
Pero la primera vez que se pudo hablar propiamente de antimateria, es decir, de "materia" compuesta por antipartículas, fue en 1965, cuando dos equipos consiguieron crear un antideuterón, una antipartícula compuesta por un antiprotón y un antineutrón. La antipartícula fue lograda en el Acelerador Protón Sincrotón del CERN, a cargo de Antonino Zichichi, y paralelamente por Leon Lederman, en el acelerador AGS (Alternating Gradient Synchrotron) del Laboratonio Nacional de Brookhaven, en Nueva York.
En 1995, el CERN anunció la creación de nueve átomos de antihidrógeno en el experimento PS210, liderado por Walter Oelert y Mario Macri, y el Fermilab confirmó el hecho, anunciando poco después la creación a su vez de 100 átomos de antihidrógeno.
F. J Hartmann, de la Universidad Técnica de Munich, y un equipo de investigadores japoneses informaron de la creación de un átomo compuesto de materia y antimateria llamado helio antiprotónico . Este átomo constaba de dos protones, dos neutrones, un electrón y un antiprotón. El átomo sobrevivió 15 millonésimas de segundo

Producción y costo de la antimateria
La antimateria es la sustancia más cara del universo, con un coste estimado de 300.000 millones de USD el miligramo. La producción de antimateria, además de consumir enormes cantidades de energía, es muy poco eficiente, al igual que la capacidad de almacenamiento, que ronda sólo el 1% de las partículas creadas. Además, debido a que la antimateria se aniquila al contacto con la materia, las condiciones de almacenamiento —confinamiento mediante campos electromagnéticos—, tienen igualmente un coste elevado.
Otra estimación de su coste la dio el CERN, cuando dijo que había costado algunos cientos de millones de francos suizos la producción de una milmillonésima de gramo.
Debido a esto, algunos estudios de la NASA plantean recolectar mediante campos magnéticos la antimateria que se genera de forma natural en los Cinturones de Van Allen de la Tierra, o incluso en los cinturones de los grandes planetas gaseosos como
También se trabaja en mejorar la tecnología de almacenaje de antimateria. El Dr. Masaki Hori ha anunciado un método de confinamiento de antiprotones por radiofrecuencia, lo que según sus palabras podría reducir el contenedor al tamaño de una papelera.
En noviembre de 2008 la doctora Hui Chen del Lawrence Livermore National Laboratory de Estados Unidos anunció que ella y su equipo habrían creado positrones al hacer incidir un breve aunque intenso pulso láser a través de una lámina de oro blanco de pocos milímetros de espesor, esto habría ionizado al material y acelerado sus electrones. Los electrones acelerados emitieron cuantos de energía, que al decaer dieron lugar a partículas materiales, dando también como resultado positrones.

Usos de la antimateria
Si bien la antimateria está lejos de ser considerada una opción por su abrumador coste y las dificultades tecnológicas inherentes a su manipulación, las antipartículas sí están encontrando usos prácticos: la Tomografía por emisión de positrones es ya una realidad. También se investiga su uso en terapias contra el cáncer, ya que un estudio del CERN ha descubierto que los antiprotones son cuatro veces más efectivos que los protones en la destrucción de tejido canceroso, y se especula incluso con la idea de diseñar microscopios de antimateria, supuestamente más sensibles que los de materia ordinaria. Pero el mayor interés por la antimateria se centra en sus aplicaciones como combustible (o incluso para armamento), pues la aniquilación de una partícula con una antipartícula genera energía pura según la ecuación de Einstein E=mc² La energía generada por kilo (9×1016 J/kg), es unas diez mil millones de veces mayor que la generada por reacciones químicas, diez mil veces mayor que la energía nuclear, y unas cien veces mayor que la energía de fusión.
Por ejemplo, se estima que sólo serían necesarios 10 miligramos de antimateria para propulsar una nave a Marte
No obstante, hay que indicar que estas cifras no tienen en cuenta que aproximadamente el 50% de la energía se disipa en forma de emisión de neutrinos, por lo que en la práctica habría que reducir las cifras a la mitad.
Antimateria en la ciencia ficción
Como es lógico, la capacidad energética de la antimateria, unida a lo exótico de su concepto, la ha convertido en un referente en obras futuristas o de ciencia ficción, tanto en combustibles como armamentos. Recientemente además se ha especulado con el peligro de los aceleradores de partículas como método de generar antimateria, por su posible robo con fines terroristas en el libro Ángeles y demonios de Dan Brown. Aunque probablemente la nave más popular que utiliza antimateria como combustible sea la Enterprise de la saga Star Trek.
En el videojuego Halo: Combat Evolved, durante al ataque a la nave Pillar of Autumn, la IA de la nave informa de que uno de los grupos de abordaje había usado una carga de antimateria

miércoles, 10 de junio de 2009

PARTICULAS DEL ATOMO


Los electrones, que están cargados negativamente, tienen una masa 1/1836 de la del átomo de hidrógeno, proviniendo el resto de su masa del protón. El número atómico de un elemento es el número de protones (o del de electrones si el elemento es neutro). Los neutrones por su parte son partículas neutras con una masa muy similar a la del protón. Los distintos isótopos de un mismo elemento contienen el mismo número de protones pero distinto número de neutrones. El número másico de un elemento es el número total de protones más neutrones que posee en su núcleo.El núcleo del átomo se encuentra formado por nucleones, los cuales pueden ser de dos clases:
Protones: Partícula de carga eléctrica positiva igual a una carga elemental, y 1,67262 × 10–27 kg y una masa 1837 veces mayor que la del electrón
Neutrones Partículas carentes de carga eléctrica y una masa un poco mayor que la del protón (1,67493 × 10–27 kg)
El núcleo más sencillo es el del hidrógeno, formado únicamente por un protón. El núcleo del siguiente elemento en la tabla periódicael helio, se encuentra formado por dos protones y dos neutrones. La cantidad de protones contenidas en el núcleo del átomo se conoce como número atómico, el cual se representa por la letra Z y se escribe en la parte inferior izquierda del símbolo químico. Es el que distingue a un elemento químico de otro. Según lo descrito anteriormente, el número atómico del hidrógeno es 1 (1H), y el del helio, 2 (2He).
La cantidad total de nucleones que contiene un átomo se conoce como número másico representado por la letra A y escrito en la parte superior izquierda del símbolo químico. Para los ejemplos dados anteriormente, el número másico del hidrógeno es 1(1H), y el del helio, 4(4He).
Existen también átomos que tienen el mismo número atómico, pero diferente número másico, los cuales se conocen como isótopos. Por ejemplo, existen tres isótopos naturales del hidrógeno, el protio (1H), el deuterio (2H) y el tritio (3H). Todos poseen las mismas propiedades químicas del hidrógeno, y pueden ser diferenciados únicamente por ciertas propiedades físicas.
Otros términos menos utilizados relacionados con la estructura nuclear son los isótonos, que son átomos con el mismo número de neutrones. Los isóbarosson átomos que tienen el mismo número másico.
Debido a que los protones tienen cargas positivas se deberían repeler entre sí, sin embargo, el núcleo del átomo mantiene su cohesión debido a la existencia de otra fuerza de mayor magnitud, aunque de menor alcance conocida como la interacción nuclear fuerte.Cuando una partícula y una anti-partícula entran en contacto, se produce el fenómeno de la aniquilación o sea de la transformación de la materia en energía. La antimateria, prevista teóricamente por los físicos de los años 30, ha sido producida en laboratorios desde mediados los años 50, gracias a los potentes aceleradores de partículas. Toda la materia está compuesta por electrones, cargados negativamente y protones cargados positivamente. Así se puede decir que la antimateria es lo mismo que la materia pero con cargas opuestas. Así, en un átomo de antimateria encontramos en lugar de protones (positivos), antiprotones (negativos) y, en lugar de electrones (negativos), antielectrones o positrones (positivos). La antimateria al entrar en contacto con la materia se produciría un efecto llamado de aniquilación, o lo que es lo mismo la transformación de la materia en energía. Una partícula de antimateria se simboliza mediante una barra colocada sobre el símbolo de la partícula correspondiente de materia. Por ejemplo, un protón () tiene una antipartícula señalada por , pronunciado p-barra. La antipartícula de un protón es llamada antiprotón. La antipartícula de un electrón (e-) es un positrón (e+). Antimateria
En químicay física, la antimateria es la contraparte de la materia. Su existencia confirma la teoría científica de la simetría universal que dice que cada elemento del universo tiene su contraparte. La antimateria está compuesta de antipartículas, opuestas de las partículas que constituyen la materia normal. Un átomo de antihidrógeno, por ejemplo, está compuesto de un antiprotón de carga negativa orbitado por un positrón de carga positiva. Si una pareja partícula/antipartícula entra en contacto entre sí, se aniquilan y producen un estallido de energía, que puede manifestarse en forma de otras partículas, antipartículas o radiacion electromagnética En 195 se consiguió producir átomos de antihidrógeno así como núcleos de antideutero, creados a partir de un antiprotóny un antineutrón pero no se ha logrado crear antimateria de mayor complejidadAntimateria, materia compuesta de partículas elementales que son imágenes especulares —en cierto sentido— de las partículas que forman la materia ordinaria que conocemos. Las antipartículas tienen la misma masa que las partículas correspondientes, pero su carga eléctrica y otras propiedades son inversas. Por ejemplo, la antipartícula correspondiente al electrón, llamada positrón, tiene carga positiva, pero en todos los demás aspectos es idéntica al electrón. La antipartícula correspondiente al neutrón, que no tiene carga, difiere de éste por tener un momento magnético de signo opuesto (el momento magnético es otra propiedad electromagnética). En cuanto al resto de parámetros que determinan las propiedades dinámicas de las partículas elementales, como la masa o los tiempos de desintegración, las antipartículas son idénticas a las partículas correspondientes. Una partícula subatómica es una partícula más pequeña que el átomo. Puede ser una partícula elemental o una compuesta. La física d partículas y la física nuclear se ocupan del estudio de estas partículas, sus interacciones y de la materia que las forma y que no se agrega en los átomos. Ejemplos de partículas subatómicas son las que constituyen los átomos: protones, electronesy neutrones.
La mayoría de las partículas elementalesque se han descubierto y estudiado no pueden encontrarse en condiciones normales en la Tierra, sino que se producen en los rayos cósmicos y en los procesos que se dan en los aceleradores de partículas. De este modo, existen docenas de partículas subatómicasLos primeros modelos atómicos consideraban básicamente tres tipos de partículas subatómicas: protones, electrones y neutrones. Más adelante el descubrimiento de la estructura interna de protones y neutrones, reveló que estas eran partículas compuestas. Además el tratamiento cuántico usual de las interacciones entre las partículas comporta que la cohesión del átomo requiere otras partículas bosónicas como los piones, gluoneso fotones.
Los protones y neutrones por su parte están constituios por quarks. Así un protón está formado por dos quarks upy un quark down. Los quarks se unen mediante partículas llamadas gluones. Existen seis tipos diferentes de quarks (up, down, bottom, top, extraño y encanto). Los protones se mantienen unidos a los neutrones por el efecto de los piones, que son mesones compuestos formados por parejas de quark y antiquark (a su vez unidos por gluones). Existen también otras partículas elementales que son responsables de las fuLos electrones, que están cargados negativamente, tienen una masa 1/1836 de la del átomo de hidrógeno, proviniendo el resto de su masa del protón. El número atómico de un elemento es el número de protones (I.2 Teoría atómica de Dalton
Dalton expuso su teoría atómica en su obra A new system of chemical philosophy en 1808, la cual afirma:
los elementos están constituidos por átomos, partículas discretas de la materia, que son indivisibles e inalterables.
Todos los átomos de un mismo elemento son idénticos en masa y propiedadeso del de electrones si el elemento es neutro). Los neutrones por su parte son partículas neutras con una masa muy similar a la del protón. Los distintos isótopos de un mismo elemento contienen el mismo número de protones pero distinto número de neutrones. El número másico de un elemento es el número total de protones más neutrones que posee en su núcleo.erzas electromagnética (los fotos y débil (los neutrinos y los bosones W y Z).